Story of "Mod2"

- Mod2 was built at the same time of Mod0, however,
- It was built with temporary sensor-baseboard
 - Due to the lack of the same TPG baseboard as of Mod0, used early prototype TPG baseboard (with AIN facings)
 - Replacing the sensor-baseboard unit in future, in mind, used ATLAS97 design sensors
 - Hybrid was "screwed" on to the baseboard, instead of gluing, to be able to dismounted
- The module performed inferior to the Mod0
 - Larger leakage current of a few μA at around 100 V, not too large but significantly larger than that of Mod0 of <1 μA
 - One chips was sick in trimming, an order larger trim step
 - And, showed global instability on one of the 6 chip hybrid, when Edge=on, depending on the location of the backplane bias connection

Story of Mod2 cont'd

- In the struggling in trying to identify the source of instability,
 - One chip died, due to insufficient cooling when the hybrid was probed
 - Sensor leakage current increased, time by time, to about 40 μA around 100 V at the end
 - The trim-sick chip was replaced, did not cure the problem
- After these poor conditions, Mod2 was sent to major surgery, dismounting the hybrid and building into a new modue with a latest sensor-baseboard assembly
 - Gambled to use one of the 3 latest TPG baseboards
 - ATLAS98 sensors
 - Replacing the dead chip; in total 3 chips were replaced, one sick chip, one dead chip, and one normal chip because of mistake (located the wrong "sick chip")

Return of "Mod2mod"

 After the surgery, named as "Mod2 modified", or "Mod2mod", returned on Friday last week, and the module was

REVIVED!!

- No sign of instability, as stable as Mod0
 - Noise scans with Edge=on, off
 - S-curves, no hint of instability nor "discontinuity"
 - Trim characteristics was as good as Mod0 (of course, the same wafer, 32423
 - Due to repeating the trim scan for the module, the measurements were done with the trim file of hybrid, trim at 2 fC= 200 mV

ATLAS SCT Module Response Curve - ABCD2T - Linear fit Run 1493 Scans 3 - 18 Charges 0.00 - 3.00 fC Module 0 Stream 0 Response Curve chip 0 p0 = 101.9 + 1.8. Response Curve chip 1 p0 = 103 + 1.74 Response Curve chip 2 p0 = 98.36 + 1.307 Gain chip 0 Gain chip 1 Gain chip 2 = 49.83 +- 2.07 \$00 Response Curve chip 3 p0 = 97.98 + 5.0 Response Curve chip 4 p0 = 104.3 + 6.5 Response Curve chip 5 p0 = 105.3 + 6.57 Gain chip 4 Gain chip 5 Gain chip 3 = 52.45 +- 2.27 \$ p1 = 49.41 +- 1.6 \$60 = 49.07 +- **1.987** 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7 (fC) 0 1 2 3 4 5 6 7 Output Noise chip 0 Output Noise chip 1 Output Noise chip 2 Input Noise chip 0 Input Noise chip 1 Input Noise chip 2 0 1 2 3 4 5 6 7 (fC) 0 1 2 3 4 5 6 7 Q(fC) 0 1 2 3 4 5 6 7_Q (fC) 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7 8 Q(fC) 0 1 2 3 4 5 6 7 8 Q(fC) Output Noise chip 3 Output Noise chip 4 Output Noise chip 5 Input Noise chip 3 Input Noise chip 4 Input Noise chip 5 0 1 2 3 4 5 6 7 (fC) 0 1 2 3 4 5 6 7 Q(fC) 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7 (fC)

ATLAS SCT Module Response Curve - ABCD2T - Polynomial fit Run 1493 Scans 12 - 37 Charges 2.00 - 8.00 fC Module 0 Stream 0 Response Curve chip 0 p0 = 94.39 + 6.74 Response Curve chip 1 p0 = 89.99 + 7.5 Response Curve chip 2 p0 = 81.64 + 7.966 Gain chip 0 Gain chip 1 Gain chip 2 = 55.07 + = 58.31 +- 3.66 \$ = -1.506 + **0.419**2 \$ 90 Gain chip 4 Response Curve chip 3 po = 84.71 + 9.24 Response Curve chip 4 po = 103.8 + 8.85 Response Curve chip 5 po = 94.02 + 6.639 Gain chip 3 Gain chip 5 = -1.199 + **0.314**(\(\bigsigma \bigsigma \) = -0.9013 0 1 2 3 4 5 6 7 ((C) Output Noise chip 0 Output Noise chip 1 Output Noise chip 2 Input Noise chip 0 Input Noise chip 1 Input Noise chip 2 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7_{Q (fC)} 0 1 2 3 4 5 6 7_Q (fC) 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7 (fc) 0 1 2 3 4 5 6 7 (fc) Output Noise chip 3 Output Noise chip 4 Output Noise chip 5 Input Noise chip 3 Input Noise chip 5

Mod2mod

- Offset (Noise pedestal)
 - (1) 50% point with Edge=off

102, 104 mV

(2) Peak with Edge=on

100, 103 mV

- (3) Intercept of 2nd-order poly with Edge=off91, 98 mV
- (4) Intercept of 2nd-order poly with Edge=on76, 79 mV
- Gain and noise (at 2 fC)
 - (1) Linear fit at 0, 2, 3 fC with Edge=off
 - (2) 2nd-order poly (2~8 fC) with Edge=off
 - (3) 2nd-order poly (2~8 fC) with Edge=on
 - Gains

~54, ~51, ~60 mV/fC

- Input noises

~1420, ~1520, ~1360 e

- These were consistent with Mod0, but differed from k3111

Module name	k3104mod	k3104mod		
Strip sensors:	Type	Thickness [um]	Vendor	
Тор	ATLAS98 narrow-m	285 um	Hamamatsu	
Bottom	ATLAS98 wide-poly	285 um	Hamamatsu	
Baseboard id.	???			
ASICs:	Type	Batch	Wafer	
M0-E13	ABCD2T	30423	3 + 9	
Hybrid:	Substrate	Substrate Surface finish		
Kapton ABCD v3	Carbon-carbon	metalized		
Capacitors:	C [nF]	Type	Reso freq [MHz]	Vendor
Vcc, Vdd	100	GRM39-X7R-104-K-25	~26	Murata
Common Vcc, Vdd	330	GRM42-6-X7R-334-K-25	~15	Murata
HV decoupling	10	GHM1530-B-103-K-630	~70	Murata
HV connections:	No. locations	No. bonds/location		
Strip	4	2		
Backplane	2	2		
AGnd-DGND connections:	14	5		
Bias [V]	Leak current [uA]	Env. temp [deg.C]	Condition	
100	~0.8	18	fan circulation	
ASIC currents [A]:	V(sense) [V]	Vth>offset+200 mV	Vth=offset	
Vcc	3.5	0.93		
Vdd	4	0.5	0.79	
Trimming:	Chage [fC]	Threshold [mV]	Trimmable ch	Untrimmable ch
(using hybrid data)	2	200	1518	18
	Edge=off		Edge=on	
Threshold uniformity [mV]	link0	link1	link0	link1
at trim threshold	3.47	3.33		
Offset threshold [mV]:	Edge=off	(2~8fC, 2nd-poly)	Edge=on	(2~8fC, 2nd-poly)
Chips	Vt50	Intercept	Peak	Intercept
link0 average	102.2	91.4	100.4	76.1
link1 average	104	98.3	102.5	79
Gain (@2fC) [mV/fC]:	Edge=off		Edge=on	
Chips	Linear(0,2,3fC)	2nd poly(2~8fC)	Linear(0,2,3fC)	2nd poly(2~8fC)
link0 average	53.1	52.8	XXX	60.1
link1 average	54	49.6	xxx	59.3
Noise (@2fC) [e]	Edge=off		Edge=on	
China	Lincor(0.2.2fC)	and natural offa	Lincor(0.2.2fC)	and males(2, 9fC)

2nd poly(2~8fC)

1480

1557

Upper [mV]

none

none

Linear(0,2,3fC)

XXX

XXX

Edge=on

Lower [mV]

none

none

2nd poly(2~8fC)

1352

1374

Upper [mV]

none

none

Linear(0,2,3fC)

1437

1409

Edge=off

Lower [mV]

none

none

Chips

Chips

link0

link1

link0 average

link1 average

Instability thresholds:

Summary

- All three modules built at KEK are now all stable
 - Mod0, Mod2mod -- ABCD2T wafer 30423
 - -k3111 -- ABCD2T wafer 27496
- ABCD2T wafers, 30423 and 27496, showed different performance in module
 - 27496 chips were more sensitive to instability, or ???
 - Although small and evident in 12 cm strips and 12 chips, the "discontinuity" looked similar behaviour in the ABCD1
- We have more statistics, and looking forward to the discussion of differences in the summary sheets